首页> 外文OA文献 >Number of females in cattle, sheep, pig, goat and horse breeds predicted from a single year's registration data
【2h】

Number of females in cattle, sheep, pig, goat and horse breeds predicted from a single year's registration data

机译:根据一年的注册数据预测的牛,绵羊,猪,山羊和马品种中的雌性数量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An objective and accountable method is needed for deducing the number of registered animals in a breed from registration data. By following the principle that individual breeders register sufficient young females to be certain of having enough replacements for their current breeding stock, the ratios were calculated of the number of adult females in a breed to the number of female registrations, in a given year. Number of breeds considered were 8 cattle, 16 sheep, 8 pigs, 1 goat and 2 equines, all in the United Kingdom or Ireland. This yielded multipliers (4.4 for cattle, 3.3 for sheep, 3.1 for pigs, with confidence limits; and a point estimate of 5.2 for goats) enabling total adult female population to be predicted from a single year's registration data. There was considerable variation between breeds in values of the multiplier, apparently for reasons of breed history and function. This was particularly evident for equines where the two breeds yielded multipliers of 3.8 and 13.9. Multipliers, using registration data that are already in the public domain, can provide an estimate of breed numerical size, which a breed society can either accept or replace with an audited census.
机译:需要一种客观而负责的方法来从注册数据中推断出一个品种中已注册动物的数量。遵循个体育种者要注册足够数量的幼小雌性以确保对其现有繁殖种群有足够替代品的原则,计算给定年份中一个品种中成年雌性数量与雌性注册数量的比率。所考虑的品种为8头牛,16头绵羊,8头猪,1头山羊和2匹马,全部在英国或爱尔兰。这样就产生了乘数(牛为4.4,绵羊为3.3,猪为3.1,有置信度限制;山羊为5.2的点估计),使得可以根据一年的注册数据预测成年女性总数。品种之间的乘数值存在很大差异,这显然是出于品种历史和功能的原因。这对于两个品种的乘数分别为3.8和13.9的马特别明显。乘数使用已经在公共领域中存在的注册数据,可以提供品种数量的估计,品种社会可以接受该数量,也可以用经过审核的普查代替。

著录项

  • 作者

    Hall, S. J. G.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号